
0018-9162/98/$10.00 © 1998 IEEE56 Computer

I
n the past 20 years, only a handful of high-
assurance, multilevel, secure computers have
been built, and even these are rarely used in
operational environments. Such systems suffer
a host of disadvantages: they cost too much,

lack user-friendly features and development environ-
ments, take too much time to evaluate and certify, and
do not scale well for secure distributed computing.
The sidebar “How Multilevel Secure Computing
Works” explains the requirements for multilevel secure
computing.

This lack of satisfactory security solutions is dis-
turbing in light of the trend toward open and distrib-
uted computing, which increases a system’s vul-
nerability to attack. We believe it is vital to develop
scalable security solutions that do not depend solely
on current architectures for multilevel secure com-
puting. We propose basing security solutions instead
on a multiple single-level security architecture,1,2 which
uses commercial (nonsecure) products for general-pur-
pose computing and special-purpose high-assurance
devices to separate data at different security levels. A
multiple single-level architecture is a viable and prac-
tical solution to distributed multilevel secure comput-
ing, as described in the sidebar. It can monitor
interactions in a way that minimizes information leaks
from a high security level to a lower security level.
Also, it uses only a handful of trusted devices to sep-
arate information, which means a less expensive and
shorter evaluation and certification process.

The keystone of this architecture is a trusted device
that “pumps” data from a low security level to a
higher one. In this article, we describe the software
design and assurance argument strategy for this device,
the Network NRL Pump, which can be used in any

multilevel secure distributed architecture. We have
completed the system requirements and logical design
of a prototype pump and are working on its physical
design. We plan to complete the prototype and its
related assurance argument some time in 1999.

DESIGN OVERVIEW
In 1993, Kang and Moskowitz introduced the basic

NRL Pump,3 which they and Daniel Lee later4

extended to a network environment. The Network
NRL Pump is the version of the NRL Pump we
describe in this article.

Figure 1 shows the pump with wrapper and appli-
cation software. Messages are sent from a low sys-
tem—a system operating at a low security level—to a
high system—a system operating at a high security
level—but not in the reverse direction. The pump and
its software work in the following manner:

• The low system sends a message to the high sys-
tem through the pump.

• The pump stores it in its buffer and sends an
acknowledgment to the low system so that the
low system knows its message was received. The
timing of this acknowledgment is probabilistically
based on a moving average of acknowledgment
times from the high system to the pump.

• The low system cannot send any new messages
until it gets an acknowledgment of previous mes-
sages sent.

• The pump stores the message until the high sys-
tem is ready to receive it and then the pump for-
wards the message to the high system.

• The high system sends an acknowledgment to the
pump.

Design and Assurance
Strategy for
the NRL Pump
The NRL Pump forwards messages from a low-level system to a high-level
system and monitors the timing of acknowledgments from the high system
to minimize leaks. It is the keystone to a proposed architecture that uses
specialized high-assurance devices to separate data at different security levels.

Myong
H. Kang
Andrew
P. Moore
Ira S.
Moskowitz
US Naval
Research
Laboratory

Co
ve

r F
ea

tu
re

.

Acknowledgments are necessary for reliable com-
munication. If the high system passed acknowledg-
ments directly to the low system, there would be a
security problem because by altering the acknowledg-
ment timing, the high system could encode an illicit
message.5 Such covert channels are dangerous because
even if all other means of communication are cut off, an
exploiter can still use such a sneaky method to violate
the security requirement.4 For this reason, the pump
decouples the acknowledgment stream. However, for
performance reasons, the long-term high-system-to-
pump behavior should be reflected in the long-term
low-system-to-pump behavior. For this reason, the

pump uses statistically modulated acknowledgments.
As the figure shows, the pump is configured as a sin-

gle hardware box with interfaces to the low system’s
LAN, (low LAN), the high system’s LAN (high LAN)
and an administrator workstation. The pump adminis-
trator, who is cleared for high-level data, uses the work-
station to load configuration information into the pump
(described in more detail later) and monitor its opera-
tion as necessary. The pump supports a specialized pro-
tocol, the pump protocol, across the LAN interfaces.

Within the low and high systems are wrappers, soft-
ware that supports a variety of applications. Wrap-
pers, which run on the low and high applications,

April 1998 57

How Multilevel Secure
Computing Works

The controlled sharing of information
is vital to the operation of most modern
computing systems. Mandatory controls
have a basis in law or organization-wide
policy. While typical users are required to
obey mandatory controls, often there are
other controls that leave the user with
some choice (discretion) over whether or
not to disclose data to others. The mili-
tary system for protecting sensitive infor-
mation is a system of mandatory controls.
Sensitive information is classified into lev-
els according to the degree of damage its
disclosure could cause to national secu-
rity, and users are assigned appropriate
clearances. Users are permitted to view a
particular level of sensitive data only if
their clearance qualifies them (and if they

have a job-related need to view that data).
A computer system may store and

process information with a range of clas-
sification levels and provide service to
users with a range of clearances. If some
users lack clearance for some of the
information it holds, the system is said to
be multilevel secure.

Multilevel secure computing lets users
access information classified at or below
their clearance, but prevents them from
obtaining access to information classified
above their clearance. A common way to
enforce this is through a policy similar to
“no reading upper level information and
no writing down to a lower level.”

In distributed computing, you can
achieve a system-wide multilevel secure
policy by sparsely using trusted multilevel
secure components to hook up single-level

systems at different security levels, thus
creating a multiple single-level security
architecture. The NRL Pump, described
in the main text, lets information be
securely sent from a system at a lower
security level to one at a higher security
level. In a generalized system that wishes
to enforce a multilevel security policy, san-
itized information (information processed
at the high level) may need to be sent to
the lower level. For this, a downgrader, a
specialized trusted component, can be
used to minimize leaks of high informa-
tion to lower level systems. Specialized
multilevel secure workstations could also
be used to let a high-level user access
lower level resources, for example,
through the Web. These three specialized
components make up the backbone of the
multiple single-level security architecture.

High
wrapper

High
application

Low
wrapper

Low
application

Pump

Buffer

High
LAN

Data

Statistically
modulated

Ack

Low
LAN

Administrator
workstation

High systemLow system

Data

Ack

Figure 1. The NRL Network Pump with wrappers and applications. The pump minimizes the ability of a system operating at high security to influence
acknowledgment timing. This reduces the threat of a covert communication channel being established from a high-security system to a low-security system.

.

58 Computer

communicate with the pump over their respec-
tive LANs. Although not shown in the figure,
each wrapper consists of two parts. The appli-
cation-specific part provides an application-
specific protocol on one side and the pump’s API
on the other. It can be tailored to support the
particular set of objects or calls to the applica-
tion it expects to see. The pump-specific part is
a library of routines that implement the pump
protocol. It supports the pump’s API on one side
and the pump protocol on the other. The appli-
cation-dependent routines can call the pump-
specific routines as required.

This structure has several interesting aspects:

• Only application programs that can operate with
very little information returned to the sender
from the receiver (for example, applications that
use asynchronous communication) can use the
pump.

• The pump’s confidentiality properties depend
solely on the pump itself, not on the wrappers.
Thus, wrapper software is not security-critical
and can be altered or replaced without affecting
system security.

• The low wrapper is a proxy of the high applica-
tion. It receives messages from the low application,
delivers them to the pump, receives acknowledg-
ments from the pump, and generates application-
specific acknowledgments. Occasionally, one
application message from a low application may
be transformed into several pump messages.

• The high wrapper is a proxy of the low applica-
tion. It receives a message from the pump, delivers
it to the high application, receives application-spe-
cific acknowledgments, and converts them to
pump-specific acknowledgments.

ASSURANCE ARGUMENT
Information systems that counter security threats

must isolate the system’s security-critical function into
simple, well-defined, reusable components that can be
trusted to carry out the security-critical function. A
detailed explanation, or assurance argument, describes
why this isolation is effective and why the critical com-
ponents are trustworthy. A system or component is
trustworthy if there is an acceptably high probability
that it satisfies all its critical requirements.

Developing a trustworthy system is not easy because
the developers must construct an assurance argument
and have it evaluated by an independent certification
team. The argument must instill high confidence that
the system does what it is supposed to do—and only
that. A convincing argument thus requires that the devel-
opment process be understandable and that the imple-
mentation clearly conform to the critical requirements.

The judicious use of formal methods can strengthen
a system’s assurance argument because the tools of
mathematics and logic ensure that critical properties
hold. However, increasing the formality of an argu-
ment does not necessarily make it more convincing to
an independent certifier unfamiliar with these tools.
Constructing a persuasive and cost-effective argument
often requires using many languages, methods, and
tools—both formal and informal. Developers must
present formal specifications and analyses in the con-
text of the overall assurance argument or much of
their persuasive power may be lost.6

Figure 2 illustrates our strategy for constructing the
pump’s assurance argument, in which we integrate
formal specifications and analyses with structured sys-
tem documentation. Along the left side are the pri-
mary levels of system refinement and documentation.
Along the right side are the specification languages
and tools used for implementation, analysis, and ver-
ification: I-Logix’s Statemate graphical specification
and simulation tools,7 ORA Canada’s Verdi/EVES for-
mal verification environment,8 and Reliable Software
Technology’s Whitebox DeepCover tools for analyz-
ing test coverage.9 The result of integrating the two
sides (the center area between the two sets of arrows)
is the pump’s assurance argument. The top-down
widening of the argument reflects the additional detail
specified at the lower levels. Red lines show completed
work; green lines show work in progress, and blue
lines show work planned.

A variety of formal and informal techniques allow
reasoning across five semantic domains: English nar-
rative, Statemate logical design, Statemate physical
design, formal Verdi PDL specification, and C++ code.

The network’s interconnection requirements are
expressed in English. The pump’s critical requirements
are also expressed in English using the primitives of a
logical view, which is specified graphically in Statemate
activity charts. We refine this logical view using a com-
bination of Statemate activity and state charts, which
constitutes the pump’s behavioral view. This refine-
ment consists of mapping the logical design compo-
nents to a physical architecture, which is described in
Statemate module charts.

The physical architecture is in turn mapped to a for-
mal Verdi specification of each module’s access pro-
gram (interface function) requirements. The developer
must show that the implementation conforms to the
Verdi specification, either through formal proof, using
the EVES verification system, or through testing, using
the Whitebox DeepCover tool for coverage analysis.
The type of verification performed depends on the com-
plexity and type of requirement (functional, security,
performance, and so on) and the code’s complexity.

We have studied the behavior and vulnerability of the
pump algorithms during normal operation,4 but not dur-

Developing a
trustworthy system
is not easy because

the developers
must construct an

assurance argument
and have it evaluated

by an independent
certification team.

.

ing connection initialization, error handling, or error
recovery. We are developing a fully functional prototype
that reflects the pump’s logical design to study vulnera-
bilities in the operational environment, such as an unan-
ticipated overuse of pump resources. We expect studies
of the prototype to clarify the pump’s administrative
requirements (such as the initialization, procedure to
establish connections) and its monitoring activities, as
well as error handling and audit requirements.

As we mentioned earlier, an assurance argument
requires easy-to-understand mappings from the criti-
cal system requirements to the design. To support this
requirement, the prototype design has three main goals:

• Clearly define each module’s task (module being
the thread or object in the prototype).

• Separate modules that interact with the low
system from modules that interact with the high

system and label them low and high, respectively.
• Reduce the communication between low mod-

ules and high modules as much as possible to sim-
plify monitoring and security verification.

System requirements
Because the prototype is not complete, we can

describe only the first two levels of the assurance argu-
ment in Figure 2. The first level is the pump’s system-
level requirements. In this view, we describe the pump
as an outsider would see it, with the pump itself being
a black box.

Configuration and administration. In a simplistic
view, the pump is just a network router that connects
a low network to a high network. However, it cannot
accept a message from a process at a lower security
level and route that message to just any process at a
higher security level. Allowing such uncontrolled

April 1998 59

System
specification

level

Languages,
tools used

in each level

System
requirements

Logical
design

Physical
architecture

Module-interface
specification

Module
internal design

Module
implementation

Critical
requirements

Human review

Human review

Testing, coverage analysis

EVES specification and proof

Logical/physical mapping, traceability checks

Covert channel analysis,
syntax/semantic checks, simulation

Assurance
argument

refinement

Detailed
logical design

Physical
architecture

Access program
requirements

Access program
design

Access program
implementation

Statemate
activity charts

Statemate activity
and state charts

Statemate
module charts

Verdi

Verdi, EVES

C++, Whitebox
DeepCover

Figure 2. Strategy for building the pump’s assurance argument—the case for why the device is considered trustworthy. On the left side are the stages
of the pump’s design. The widening of the center region indicates a refinement of the design specification to a more detailed specification or
implementation; vertical arrows indicate a translation of a specification from one semantic domain to another at a comparable abstraction level. The
center region forms the assurance argument. The increased width from the top down reflects the additional detail specified at the lower levels. Red
lines show work completed to date, green lines show work ongoing, and blue lines show work planned.

.

60 Computer

behavior would mean that any low process
could establish a connection to any high
process, which would waste pump resources.
Moreover, a low Trojan Horse process could
ping high processes to see if any high Trojan
Horse processes exist. The pump should pre-
vent such arbitrary exploitation, but at the same
time be available to many applications.

To meet these requirements, processes that use
the pump must register their addresses with the
pump administrator. The pump administrator,
who verifies that the registration is legitimate, can
enter the addresses of registered processes into

the pump’s configuration file, which the pump admin-
istrator manages. Because the pump checks the config-
uration file only when a connection is established, the
administrator can change the file and reload it at any
point during the pump’s normal operation.

The file contains

• Pump initialization information. This includes
things like window size, maximum number of
connections, and the length of time the pump
must maintain the last message if the connection
abnormally aborts.

• Registered low and high processes. These
processes are likely to be the low and high wrap-
pers because the pump typically communicates
with COTS applications only through these wrap-
pers. When the wrapper is registered, it also iden-
tifies the application it interacts with as being either
recoverable or nonrecoverable (described later).

• Allowable connections. This information, which
the pump administrator specifies in the connec-
tion table, is used to control network access when
a low process sends a connection request to the
pump.

The pump also has an external interface, which the
administrator uses to load configuration files, request
pump status, and so on. When the administrator
requests the pump’s status, the interface returns the
status of active and aborted connections (how long
the connection was active or idle). When the connec-
tion’s idle time is too long, the pump administrator
can kill the connection.

Finally, the pump maintains a well-known port to
which a low process can send a connection request to
a specific high process.

Recovery. Once a low wrapper receives an acknowl-
edgment from the pump, it must be able to safely assume
that the pump will deliver the message to the corre-
sponding high wrapper, even if there is a power failure
or system crash in either the pump or high wrapper.

Applications will have either a nonrecoverable or
recoverable connection, which the wrapper identifies.

The type of connection determines how the pump will
act if the connection is abnormally aborted. An FTP
client and server, for example, are nonrecoverable;
that is, if the connection breaks in the middle of a file
transfer, they will not expect the file transfer to be
recovered when the connection resumes. However, a
connection between a Sybase replication server and
an SQL server is recoverable: if the connection abnor-
mally breaks, they expect recovery after the connec-
tion is resumed.

Different recoverable applications have different
recovery procedures, so their wrappers must maintain
the information necessary for recovery. In the Sybase
replication server and SQL server exchange, for exam-
ple, the wrapper must keep the last message the repli-
cation server sends to the SQL server, because it is for
synchronization. However, because the wrapper can-
not predict when the connection will be aborted, it
must write every “last” message to persistent storage.
In general, the low and high systems in which the wrap-
pers reside are nonrecoverable, and maintaining per-
sistent messages is usually very expensive, since every
message must be written to disk and synchronized.

The pump itself is recoverable, however, which
reduces the cost of maintaining an extra persistent
message for a recoverable connection. If a recoverable
connection is aborted, the pump maintains the last
message it receives from the low system, even if it has
delivered all the other messages to the high system.
However, because it cannot keep it indefinitely, the
pump maintains this last message for only T hours, a
parameter specified in the configuration file. The pump
administrator can always reclaim the resources from
the aborted connection after T hours.10

Message classes and procedure to establish con-
nections. To make connection recovery easier, the
pump operates at the application layer and commu-
nicates to the low and high systems through pump
messages. The data message and control message
classes are inherited from the generic pump message
class. (Technically, these message classes are part of
the logical design in the next level, but because they
are directly concerned with how outsiders interact
with the pump, we decided to describe them here.)

The procedure to establish connection involves
exchanging control messages among the low system,
high system, and pump. When the low system sends
a connection request message to the pump, it identi-
fies itself with its own address and type of application
(recoverable or nonrecoverable). It also specifies the
address it wishes to connect to.

The pump will check the configuration file to deter-
mine if the request is permitted. If the low system and
high system addresses match addresses in the connec-
tion table, the pump sends a connection valid message
to the low system. If the connection request originated

To make connection
recovery easier, the

pump operates at
the application layer
and communicates
to the low and high

systems through
pump messages.

.

from an unregistered low process, the pump ignores
the request. If a registered low process requests a con-
nection not specified in the connection table (an illegal
request), the pump sends a connection rejected message
to the low system. When the low system receives a con-
nection valid message, it disconnects the current con-
nection and is ready to accept a new connection from
the pump. This redundant connection procedure acts to
verify the address of the low system. The low system
then uses the new connection to transmit data.

Registered high processes are always ready to accept
a connection from the pump. Once the pump validates
the connection request from the low system, it initiates
a new connection to the high system by relaying the
connection request message that came from the low
system. The high system validates the request and sends
a connection valid or connection rejected message to
the pump. When the new connection is established, the
pump sends a connection grant message with initial-
ization parameters to the high system. If the connection
is recoverable and the previous connection was
abnormally disconnected, the pump will send an unde-
livered message from the previous session to the high
system. If the connection to the high system is suc-
cessfully established and all undelivered messages are
cleared, the pump establishes a connection to the low
system and sends a connection grant message to the
low system. If the connection is recoverable and the
previous connection was abnormally disconnected, the
pump sends the last data message it received from the
low system for synchronization. If the pump cannot
establish the connection to the high system or clear all
undelivered messages from the previous session, it
establishes a connection to the low system and sends
it a connnection exit message. The pump also sends
connection exit messages to both the low and high sys-
tems when it is ready to shut down the connection
because of error or the administrator’s request.

Once the pump establishes a connection from the
low system to the high system, it uses the data message
to send information. Ack is a special data message with
zero data length (the first two bytes are zero) that can
be sent from the high system to the pump and from the
pump to the low system. Another special data message
is connection close, which is sent at the end of normal
data transmission. The message, which requests a nor-
mal connection close, can be sent from the low system
to the pump and from the pump to the high system.
The connection close message would seem to be a con-
trol message, not a data message. However, it must
propagate from the low system to the high system
through the pump in sequence. To make it a control
message, we would have to introduce an extra com-
munication channel from the low system to the high
system. By sending it as a data message through the
established connection, not only do we avoid the need

for an out-of-band signal, we are also assured
that the connection close message will be
processed in the correct order. That is, by the
time the high system receives the message, all
other data messages should have processed. In
general, the connection close message originates
from low wrappers, not low applications.

Logical design
The second level of the assurance argument in

Figure 2 is logical design. This internal view of
the pump must support the first level of the assur-
ance argument and the three design goals given earlier,
especially mapping functions from system requirements
to parts of the logical design.

The pump has three data structures: the connection
table (one per pump), the connection buffer (one per
active or aborted connection), and the pump messages
just described. It also has three types of threads: the
main thread, trusted low threads, and trusted high
threads. A significant challenge in logical design is
error handling.

Connection table. The pump maintains a connection
table that records the status of all active and aborted
connections. If there is a legal connection in the con-
figuration file, there is one entry in the connection
table; if the connection is neither active nor aborted,
there is no entry in the connection table. Each entry
records the connection’s status (active or aborted), the
address of its connection buffer, the addresses of the
high and low pointers to the trusted high threads and
trusted low threads (null if the connection is inactive),
and the time of the last activities of either the trusted
high threads or trusted low threads.

Connection buffer. Each connection between a low
sender and a high receiver has one FIFO-bounded
buffer controlled by a monitor and two threads: the
trusted low thread puts messages in the buffer, while
the trusted high thread removes them. The connec-
tion buffer stores an array of handles of data mes-
sages and a variable that records the moving average
of the outgoing message rate (the trusted high
thread’s consumption rate), which the trusted low
thread uses to control the stochastic delay for
acknowledgments to the low system.

The pump creates a connection buffer when the low
system requests a new, valid connection to a high
process and if there is no preexisting connection buffer
from an aborted connection between the same pair of
low and high ports. A connection buffer is deleted
when a connection terminates normally (with a con-
nection close message).

Threads. The main thread initializes the pump. This
includes reading the configuration file to track relevant
information for each connection. The main thread also
“listens” to the well-published port of the pump to

April 1998 61

Once the pump
establishes a

connection from the
low system to the

high system, it uses
the data message to
send information.

.

62 Computer

which the low system sends connection request
messages. In response to a valid request, the
main thread spawns a connection that consists
of a trusted high thread, a trusted low thread,
and a connection buffer. It then sends a connec-
tion valid or connection rejected message to the
low system, depending on the validity of the
request (or it ignores the request if the request is
from an unregistered low process). The main
thread also populates the connection table as it
spawns a connection, providing the connection’s
status and pointers to the trusted high thread,
trusted low thread, and connection buffer. The
rest of the connection setup is done by both the

trusted high thread and the trusted low thread. After
exchanging necessary control messages, the low sys-
tem starts sending data messages.

The trusted high thread establishes a connection to
the high system by sending a connection request mes-
sage. After it receives a connection valid message, the
trusted high thread sends a connection grant message
that contains the connection ID, maximum message
size, and so on. The trusted high thread then delivers
any leftover data messages in the buffer from the pre-
vious (aborted) session to the high system. When the
buffer is empty, it awakens the trusted low thread. The
trusted high thread keeps delivering messages as long
as there are messages in the connection buffer. It also
updates the moving average according to acknowl-
edgment times from the high system.

Both the trusted high thread and trusted low thread
use a sliding window scheme. The window size w is
specified in the configuration file (as part of the pump
initialization information). In the scheme, a trusted
high thread can send up to w data messages from the
buffer without receiving acknowledgments from the
high system. The pump protocol requires the high sys-
tem to send acknowledgments to the trusted high
thread in the same order it receives messages. If the
high system violates pump protocol by sending an out-
of-sequence acknowledgment, the trusted high thread
sends a connection exit message to the high system,
disconnects the pump from the high system, and logs
the high system’s misbehavior.

When a trusted low thread is created, it waits for a
trusted high thread to awaken it. This occurs when all
undelivered messages from the previous session are
delivered to the high system if the connection is recov-
erable. The trusted low thread then establishes a con-
nection to the low system and sends it a connection
grant message. If the application is recoverable and
the last message is not a connection close message
received from the previous session (there was an
abnormal disconnection), the trusted low thread also
sends the last message it received from the low sys-
tem. It then starts to receive data messages from the

low system. When it receives a data message, it veri-
fies the message ID and connection ID, allocates mem-
ory, and stores the message’s handle in the connection
buffer. The trusted low thread also computes a statis-
tical moving average, as described earlier, which is
based on the moving average rate at which the trusted
high thread consumes messages.

The trusted low thread receives up to w data mes-
sages without sending any acknowledgments to the
low system. The trusted low thread must acknowl-
edge messages in the same order it receives them from
the low system, despite the probabilistic delay. To
maintain the order and timing of the delayed acknowl-
edgments, the trusted low thread maintains the cur-
rent acknowledgment ID and the pending ack-
nowledgment queue. When the trusted low thread
computes the delay, it stores time values in ascending
order that tell when to send the next acknowledgment
in the queue. As soon as it reaches the first time value in
the queue, it sends an acknowledgment with the cur-
rent acknowledgment ID and increments the current
acknowledgment ID.

Error handling. Error or failure handling is one of
the most difficult parts of design because there is no
theory or best way to handle errors. One important
question is “How smart should the pump be for error
recovery?” The smarter the pump, the more complex
the software, and the harder it will be to ensure its
correct behavior. We designed the pump’s error han-
dling with this in mind.10

SECURITY ANALYSIS
As Figure 2 shows, analyses performed on these

specifications include a covert channel analysis, a
Statemate analysis of their logical consistency and
completeness (syntax/semantic checks), and Statemate
simulations. We have specified the logical design just
described in the Statemate tool set, and it has passed
the correctness/completeness checks Statemate re-
quires. Of course, this does not ensure that the design
conforms to the pump’s critical requirements. As the
figure also shows, this requires a human review, a
detailed covert channel analysis, and simulation of the
logical design. We are currently soliciting comments
on our design and have just started detailed confor-
mance testing using the Statemate simulator. The rest
of this section is devoted to the security of the logical
design, including its covert channels.

As we have shown, the pump is a secure one-way
communication device that minimizes any direct or
indirect communication from the high system to the
low system. Only the trusted high thread talks to the
high system; the main thread and trusted low thread
talk to the low system—and the main thread only dur-
ing connection setup. Thus, all interaction involves
only the trusted high thread and trusted low thread.

The pump is a
secure one-way
communication

device that
minimizes any

direct or indirect
communication from
the high system to

the low system.

.

Even though these two threads are trusted software,
however, we still minimize their interaction from high
to low because any communication in that direction
must be carefully monitored.

Figure 3 shows the pump design in the context of
thread interactions during normal operation. There is
no direct communication between the two trusted
threads and only three indirect communication paths
between them. Only two of these three paths must be
monitored, however, because the middle path is one-
way upward. These two paths and their effects on the
low system are described in detail elsewhere.3,4

A major part of the pump’s security design is its abil-
ity to mitigate covert timing channels from the high sys-
tem to the low system. However, some information can
still be sent in that direction because the pump notifies
the low system when a connection is down and some-
one can manipulate the recovery processes to leak data.

When designing a secure device with any sort of real-
istic functionality, the best you can hope for is to mini-
mize covert communication from the high system to the
low system;5 it is impossible to eliminate it. The pump
design enforces a minimum time τ between connection
reestablishment and the auditing of any connections that
abort often. Thus, we have at worst introduced an addi-
tional covert channel with a capacity of approximately
[number of connections] bits per τ. Furthermore, the
audit process will easily detect any covert channel that
attempts to send meaningful amounts of information
using a disconnect/connect strategy.

Finally, in this analysis, we assume that the
processes on the same level do not communicate
among themselves. We plan to relax this condition in
future work. Our preliminary research indicates that
intra-LAN communication does not significantly
increase covert channel capacity.

T he NRL Network Pump provides a solid
foundation for progress toward the proposed
multiple single-level architecture. We are cur-

rently experimenting with mapping the three threads
onto three processors. One processor would handle
connection requests from the low system and com-
munication to the administrator (main thread is
mapped to this processor), one processor would han-
dle all other communication to the low system (trusted
low thread), and the last processor would handle all
communication to the high system (trusted high
thread). If we use only two processors, one processor
could handle all communication to the low system
(connection requests and data from the low system);
the other processor could handle all communication
to the high system and the administrator. ❖

References
1. M. Kang, J. Froscher, and I. Moskowitz, “A Framework

for MLS Interoperability,” Proc. High-Assurance Sys-
tems Eng. Workshop, IEEE CS Press, Los Alamitos,
Calif., 1996, pp. 198-205.

2. M. Kang, J. Froscher, and I. Moskowitz, “An Architec-
ture for Multilevel Secure Interoperability,” Proc. Com-
puter Security Applications Conf., IEEE CS Press, Los
Alamitos, Calif., 1997, pp. 194-204.

3. M. Kang and I. Moskowitz, “A Pump for Rapid, Reli-
able, Secure Communication,” Proc. ACM Conf. Com-
puter and Comm. Security, ACM Press, New York,
1993, pp. 119-129.

4. M. Kang, I. Moskowitz, and D. Lee, “A Network Pump,”
IEEE Trans. Software Eng., May 1996, pp. 329-338.

5. I. Moskowitz and M. Kang, “Covert Channels—Here
to Stay?” Proc. Computer Assurance Conf., IEEE CS
Press, Los Alamitos, Calif., 1994, pp. 235-243.

April 1998 63

Trusted
high thread

BufferMoving
average

Buffer
counter

High
security

level

Low
security

level

Write

Write

Write/read

Read

Read

Write/read

Trusted
low thread

Figure 3. Pump design in terms of thread interactions. The main thread is not shown because it talks to the low system only
when the connection is set up. The design avoids direct communication from the high security level to the low security level,
and has only three indirect communication paths between the trusted high thread and trusted low thread. Of those, only the
two outside paths must be monitored because the center path is moving only from the low to high level.

.

6. A. Moore and C. Payne, “Increasing Assurance with Lit-
erate Programming Techniques,” Proc. Computer Assur-
ance Conf., IEEE CS Press, Los Alamitos, Calif., 1996,
pp. 187-198.

7. D. Harel et al., “Statemate: A Working Environment for
the Development of Complex Reactive Systems,” IEEE
Trans. Software Eng., Apr. 1990, pp. 403-414.

8. S. Kromodimoeljo et al., “EVES: An Overview,” Tech.
Report CP-91-5402-43, ORA Canada, Ottawa,
Ontario, 1993.

9. Whitebox DeepCover: User Reference Manual, Reliable
Software Technologies, Sterling, Va., 1996.

10. M. Kang, A. Moore, and I. Moskowitz, “Design and
Assurance Strategy for the NRL Pump,” NRL Memo
5540-97-7991, Naval Research Laboratory, Washing-
ton, D.C., Dec. 1997.

Myong H. Kang is a computer engineer at the US
Naval Research Laboratory, where he is designing a
multilevel secure workflow and applying it to mission-
critical applications. In previous work at NRL, he
developed the prototype of Sintra multilevel secure
database systems and related theories. His research
interests include distributed computing, parallelization
techniques, data modeling, consistency maintenance,
and performance modeling in parallel and distributed
systems. Kang received an MS from the University of
Illinois at Urbana-Champaign and a PhD from Pur-
due University, both in electrical engineering.

Andrew P. Moore is a computer scientist at the Naval
Research Laboratory’s Center for High Assurance
Computer Systems, where he develops methods and
tools to more easily engineer affordable high-assur-
ance systems and products. His research interests
include high-assurance system development, soft-
ware/hardware codesign, formal methods, and model
checking. Moore received a BA in mathematics and
computer science from the College of Wooster and an
MA in computer science from Duke University.

Ira S. Moskowitz is a mathematician at the Naval
Research Laboratory, where he researches the formal
foundations of computer security, including covert
communication channels, information theory,
automata theory, and special function techniques. His
current research interests include steganography, inse-
curity flow, and the inference problem in database
design. Moskowitz received a BS and a PhD, both in
mathematics and both from the State University of
New York at Stony Brook. He is a member of the
IEEE and of Sigma Xi.

Contact Myong Kang at Naval Research Laboratory,
Code 5540, Washington, DC 20375; mkang@itd.
nrl.navy.mil.

.

